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The symmetry-plane laminar boundary layer over an impulsively-started prolate 
spheroid of axes ratio 1/4 at  various incidence is calculated in detail. Results agree 
with the steady solutions a t  large times. The most important one is concerned with 
the similarity between the distribution of the leeside skin friction a t  a fixed incidence, 
but varying in time, and that of the leeside skin friction for steady flows varying in 
incidence. The latter patterns led previously to the concept of an open and closed 
separation sequence for steady flows, likewise the newly found similarity suggests an 
unsteady open and closed sequence ; i.e. at low incidence, separation starts around 
the rear stagnation point and gradually expands upstream in time, but it is always 
of the closed type. At moderate to high incidence, closed separation prevails a t  small 
times, open separation develops a t  large times, but separation may either remain 
open a t  moderate incidence or return to closed a t  high incidence as the steady-state 
condition is approached. The rate of approach toward the steady-state condition 
increases with incidence. For a less slender spheroid there is no open separation 
involved; unsteady separation lines are all of the closed type. For bodies other than 
spheroids, similar ideas may be applied. 

1. Introduction 
The present work considers the unsteady laminar boundary layer along the 

symmetry-plane of an impulsively-started prolate spheroid of which the axes ratio 
b/a  is 1/4 (figure 1). This is undertaken as a prelude to full three-dimensional 
investigations over the entire body. Once the flow behaviour along both the windside 
and the leeside symmetry planes is well understood, a great deal can be learned 
regarding the overall flow on the whole body. Complete solutions of genuine unsteady 
three-dimensional boundary layers still remain scarce at present. 

The same problem was first initiated by Wang & Fan (1982), but calculations then 
were confined to the nose region a t  a single incidence (45"). As restrictive as they 
were, some conclusions from this previous work have been confirmed by the present 
more detailed calculations. 

In  this work, calculations were made along the entire symmetry-plane of the 
prolate spheroid a t  incidence 6", 30", 45" and 50". Both windside and leeside were 
included, except in the 6" incidence case where only the leeside was calculated 
because the windside problem a t  such a low incidence was thought to deviate very 
little from the axisymmetric case, and hence not many new features could be 
expected. 

The relevant governing equations are presented in $ 2 ;  brief descriptions of the 
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FIGURE 1. Prolate spheroid (b /a  = 1/4), coordinates and notations. 

method of solution in $ 3  and results in 94. Among the most interesting features 
obtained is the similarity between the distribution of the unsteady leeside skin 
friction varying in time, but at a fixed incidence, and the distribution of the steady 
leeside skin friction varying in incidence. The latter distribution was used previously 
as the basis in developing the idea of the open and closed separation sequence in 
steady flows (Wang 1972). This idea, first conceived according to the symmetry- 
plane studies (Wang 1970), was later confirmed by full three-dimensional calculations 
and by experiments. Based on the similarity just mentioned, an unsteady open and 
closed separation sequence is proposed using similar arguments. Preliminary aspects 
of this unsteady open and closed sequence have been presented before (Wang & Fan 
1982), but a more complete picture, as presented in 95, has only been reached as a 
result of the present more detailed calculations. This proposed sequence is 
fundamentally different from the conventional notion of unsteady three-dimensional 
separations. More details of the present work have been previously reported (Xu & 
Wang 1987). 

2. Equations 

in non-dimensional form are 
The governing equations for the present symmetry-plane boundary layer written 

Briefly, referring to figure 1, a is the incidence angle, p and 8 are two surface 
coordinates and x is the normal coordinate. The corresponding velocities are u, v and 
w, and U and B are the inviscid velocities at the outer edge. The metric coefficients 
are h, and r ;  and r ,  in fact, is also the cross-sectional radius. 

h, = [( 1 - e2pu2)/( 1 -p2)] i :  

r = [(1-e2)(1-,u2)lt, 

where e = ( I  -V/a2$ ,  
a and b are the semi-major and -minor axis of the ellipsoid. 
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At the plane of symmetry, 21 = 0, so that v,( = a21/a0) is taken as an independent 
variable along with u and w. The boundary conditions are 

u = U ,  v, = V, (i.e. aV/aO) at z - t  CO, 

u = v , = o  a t z = o ,  

where U ,  V, and the pressure gradients are known; 

1 u = [( 1 + k,) (cos a) (1 --p2);+ @/a) (1 + k,)  (sin a) ,u cos 81, 
( l - e p )  

V, = (1 + k,) sin a cos 8, 

a2p 1 
- -- ( l + k , ) ( l + k , )  cosasina -- 

a02 (b/a) 

with 
b ( l+k , )s ina  
a ( I + & )  cosa' 

h = (-) 
-Iog--l]/[---log=], 1 l + e  1 1  k, = -. 1 
2e 1-e 1-e2 2e l - e  1 +2k, 

Based on the u-velocity, the skin friction and the displacement thickness are defined 

dl,* = Jam (1 - u/U) dz. 

Analogously, we define based on the v,-profile, 

In applying the equation for unsteady total displacement thickness (Moore & 
Ostrach 1957) 

to the symmetry-plane case, care must be taken to incorporate A:, into the final 
expression 

ad* 1 a v -+- - [rU(A*-d,*)] +A (A* -A,*) = 0, 
at rh, d,u r 
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where A* is the total displacement thickness, q is the resultant velocity and subscript 
1 refers to the outer edge of the boundary layer. I n  this work, only A: is presented, 
A* was not calculatcd. 

For two-dimensional unsteady problems, Wang ( 1979) defined analogous limiting 
streamlines in the ( x ,  +plane (or (p.  t)-plane in the present case) by 

where & A2 may be considered as a scale factor because it does not change the overall 
flow pattern. The unsteady scparation is then identified by the running-together of 
those limiting streamlines. The same method is used in the present symmetry-plane 
problem. 

3. Method of solution 
Equations (1  a+) are similar in structure to those for three-dimensional steady 

boundary layers investigated before (Wang 1974, therefore the same numerical 
methods and computer programs developed earlier were used here. 

3.1. Initial projiles 
To start the computations, two sets of initial profiles, temporal and spatial, are 
required. 

Immediately after the start, potential flow prevails. The usual first approximation 
of a small-time expansion may be used as the temporal initial profiles ( t  = t o ) ,  

IT(to,,u, z )  = U(,u) erf - , (;j 
V & , p , z )  = Voerf - . (L j  

where erf is the error function. 
Based on the argument that diffusion and convection within the framework of 

boundary-layer theory affect the downstream flow only, solutions near the front 
stagnation point may be considered to be nearly independent of time. Thus, the 
required spatial initial profiles are provided by the steady symmetry-plane solution 
near the stagnation point. 

3.2. Diflerence schemes 

A Crank-Nicolson type of the finite difference method (Wang 1979) was used. In 
regions where no reversal of the u-velocity occurs: 



Unsteady laminar boundary la,yer 417 

But in regions where reversal of the u-velocity does occur, a zig-zag scheme (Krause 
1969; Wang 1979) is used in order to satisfy the dependence rule (Wang 1975), 

3.3. Dependence zone 

For steady three-dimensional boundary layers, the calculation was found to have to 
follow the zone of dependence rule (Raetz 1957 ; Wang 1971). For steady, symmetry- 
plane problems, the wedge-shaped dependence zone shrinks to the symmetry-plane 
itself and it was found (Wang 1970) that the calculation stops a t  the onset of the 
reversal of the u-velocity profile, but the reversal of the v,-profile was unexpectedly 
calculated with no sign of any difficulty. This result was a t  first looked upon with 
suspicion, but later calculations of the full three-dimensional problems as well as the 
repeat calculations of the same symmetry-plane problem confirmed that the result 
was correct. However, a theoretical explanation was not available. 

For unsteady cases in the two-dimensional or the symmetry-plane, an analogous 
zone of dependence (Wang 1975, 1979) must be observed. So a t  the beginning of the 
present work, the same question was raised again, i.e. what are precisely the 
differences in logic for the calculation of the u-profile and the v,-profile! In  the 
unsteady case, we further know that the reversal of the u-profile can be calculated 
up to separation unlike in the steady case, where the calculation of the reversal of the 
u-profile is prohibited. 

To provide the missing explanation, we carried out a characteristics study of the 
system of equations (1 a-c). The determinants (Wang 1971) of the characteristics and 
subcharacteristics were found respectively to be 
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which shows that the addition of ( l b )  for vH (compared to equations for two- 
dimensional cases) merely increases the power (Wang 1975) from 3 to 5 in (10a) and 
from 1 to 2 in (lob). Otherwise, the same dependence rule applies to both the two- 
dimensional and the symmetry-plane problems. The underlying reason why the 
reversal of vg is not prohibited by the dependence rule is recognized due to the fact 
that in both ( l a )  and ( I b ) ,  the differential operator 

a a a 
-+u- + W -  
at hpap ax 

does not involve vg. Yet it it this operator which determines the subcharacteristics 
in (lob). 

3.4. Remarks about independence 
Historically there was some doubt about whether the symmetry-plane boundary 
layer could be determined independently of the adjacent boundary layer area. On 
initial inspection, this seems to violate the principle of upstream influence for a 
problem known to be initial-valued. This dilemma was difficult to solve precisely. 
Later, the concept of the zone of dependence did provide theoretical justification 
(Wang 1971) to this symmetry-plane approach. However, there still remain other 
puzzling questions. 

For example, the symmetry-plane problem has often been interpreted to vaguely 
imply the following : 

(i) The symmetry-plane boundary layer is independent of the rest of the boundary 
layer. It neither depends on the rest of the flow, nor does it influence the rest of the 
flow, and : 

(ii) No fluid particle that  does not lie in the symmetry-plane originally will ever 
reach that plane. 

I n  the authors’ view, these statements are not correct. The confusion seems to arise 
from the lack of distinction between the word ‘independence’ in the mathematical 
sense and in the physical sense. It is true that mathematically the symmetry-plane 
boundary-layer equations (1 a-c) can be decoupled and solved separately from the 
rest, but it is confusing to state that the symmetry-plane flow is physically 
independent of the rest, because it is not. Equations   la,^) differ from those for 
axisymmetrical boundary layers only in the presence of the term vg/r in (1  c ) .  This 
term, being a lateral derivative, oviously depends on the flow off the symmetry 
plane. Hence, physically the windside symmetry-plane flow does affect the rest of the 
flow, whereas the Leeside symmetry-plane flow is affected by the rest of the flow. 

Secondly, the fluid particles do leave (windside) and join (leeside) the symmetry 
plane. This can also be seen from the term ve/r  in the continuity equation ( l c ) .  This 
term may be interpreted to represent the rate of mass addition (if vo < 0). Confusion 
is usually caused by the argument : the cross-velocity v is identically equal to zero, 
so that the fluid particles cannot leave or join the symmetry-plane if they do not 
originally lie in the plane. This argument is actually not correct. Considering the 
leeside case, the fluid particles may be thought to approch the symmetry-plane 
symmetrically from two opposing sides ; their cross-velocity v decreases as they move 
closer to the plane and become zero only when they reach the plane. Hence, the fluid 
can join the leeside symmetry-plane. Similarly, one can argue that the fluid can leave 
the windside symmetry-plane. 
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3.5. Computational details 
The initial time to was set to be 0.005 and the initial station po was taken at  p, f 0.005 
where ,us is the front stagnation point. With spatial initial profiles a t  pa, the 
calculation marches downstream a t  a fixed time t in an explicit fashion. At each p- 
station, the solution between the body ( z  = 0) and the outer edge (2- 00)  is 
calculated implicitly. The same process is repeated as time increases from t to t + At 
until the results approach their steady-state values. 

As the boundary layer grows, the number of steps in the z-direction must be 
increased ; when that number exceeds 90, Az is doubled. 

Uneven steps were used in the p-direction. Smaller Ap were needed near both ends 
of the body where values of h, are relatively large and pressure gradients are strongly 
adverse. At first (Wang & Fan 1982) At = 0.005 were set for the case of 45" incidence. 
The skin friction was found to be oscillating as time passed 0.2 ; such oscillations were 
only removed after smaller A p  and At were used. Large At can be used a t  large times. 
All different steps used in this work are listed in the report by Xu & Wang (1987). 
At varies from 0.001 to 0.005, A p  from 0.000325 to 0.0025. 

3.6. Determination of unsteady separation 
The method of determining two-dimensional unsteady separation was once disputed, 
however it was later clarified (Van Dommelen & Shen 1980; Wang 1982; Zhang 
1983). Van Dommelen & Shen identified separation by singularities in their 
Lagrangian type of calculation ; Wang (1979) proposed to determine the separation 
by the convergence of analogous limiting streamlines in the (x, t)-plane. The latter 
idea was carried over from three-dimensional steady cases for which separation is 
determined by the convergence of limiting streamlines. For an impulsive-started 
circular cylinder, Wang's ( 1979) prediction of separation by this proposed criterion 
was in agreement with others (Van Dommelen & Shen 1980; Cowley 1983). The same 
criterion is applied to the present symmetry-plane problem to further test its 
validity ; the results again agree with the steady-state values a t  large times. 

4. Results 
Calculations were made for a prolate spheroid of b/a  = 114 a t  01 = 6", 30°, 45" and 

50". Only the results of a = 6" and 30" will be presented here in order to exhibit the 
contrasting features between low and high incidence and between the windside and 
the leeside. The results of 45" and 50" follow the same pattern of 30°, only the skin 
friction ct will be shown here because of its connection with discussions about 
separation. 

For an impulsively started motion, pressure does not change with time, i.e. the 
same pressure as in the steady flow. The pressure variation along the symmetry- 
plane is shown in figure 2 ( a ,  b ) .  At higher incidence, the pressure gradients are larger. 
Larger pressure gradients appear to affect, among others, the rate of approach from 
unsteady conditions towards the final steady state. In the present calculations, the 
case of 50" incidence reaches the steady-state condition much faster than the case of 
6" incidence. 

4.1. a = 6", leeside 
Figure 3 shows the variation of the skin friction cf,. At a fixed p-station, cf, decreases 
with time and steadily approaches its steady-state value. Such a decrease of clp is 
expected from the fact that initially the boundary-layer thickness is nearly zero, SO 
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FIGURE 2. Pressure along the symmetry-plane. ( a )  Windside. ( b )  Leeside. 
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FIGURE 3. Leeside skin friction, cf, (a = 6"). 
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FIGURE 4. Leeside skin friction, ( c ~ ) ~ ~  (a = 6') 
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FIQURE 5 .  Leeside displacement thickness, A f  (a = 6"). 
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FIGURE 6. Windside skin friction, cfll (a  = 30') 
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FIGURE 7. Windside skin friction, (c,),~ (a = 30"). 

the skin friction is almost infinite. As time increases, the rate of approaching the 
steady state for the present low-incidence case becomes rather slow. At t = 1.8, which 
is a relatively large time compared to those for other cases calculated, the flow has 
not yet reached the steady state. At any fixed time, c,, first reaches a maximum near 
the vertex and then decreases rapidly in the nose region; along the rest of the 
symmetry-plane, cf, decreases rather gradually until near the rear end, when it drops 
to zero. The point where c,,, vanishes is referred to as the zero-c,, point. In  the present 
low-incidence case, the zero-c,, point gradually moves upstream as time increases. 
This is what is usually expected. 

Figure 4 shows the variation of the analogous skin friction (c,)~, based on the v, 
profiles. A change of sign of (cf),, signifies a reversal of w,-profiles; but near the 
symmetry-plane w = (aw/aO) AO, hence reversal of the w,-profile implies reversal of the 
v-velocity near the symmetry-plane. At small times, (c,)~, remains always negative, 
so there is no reversal of the v-velocity. As time increases, reversal of the v,-profile 
first occurs near the rear end and then gradually moves upstream. The point where 
(cf),, vanishes is referred to as the zero-(c,),, point. It is a characteristic of the present 
low-incidence case that both points of zero-cf, and of zero-(c,),, continue moving 
upstream with time. The importance of this behaviour is related to flow separation 
and will be discussed later. 

Figure 5 shows the variation of the displacement thickness A f .  As expected, A; 
increases with time a t  a fixed p-station and increases from the front towards the rear 
along the body a t  any fixed time. 

4.2. a = 30", windside and leeside 
High-incidence flow displays more unconventional features. Both windside and 
leeside were calculated, and these results are presented here to show typical 
differences between the windside and the leeside. The leeside results are further 
compared with the same for 01 = 6" to exhibit the incidence effects. 

Figures 6-8 give the windside skin frictions cp,, (c!),, and displacement thickness 
A:. c,, increases all the time along the body, except near the rear end, but decreases 
a t  a fixed-station as time increases. The steady-state condition of c,, was reached a t  
t = 0.5. (c,),, is positive on the windside and remains always nearly constant along 
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FIGURE 9. Leeside skin friction, cf,, (n = 30"). 
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FIGURE 11. Leeside displacement thickness, A: (a = 30"). 

the body except near two ends. This implies that  a t  such a high incidence, ( c ~ ) ~ ~  never 
becomes zero (or the v-velocity profile never reverses near the body) on the windside 
except at the very rear end. The situation is different in the case of 6" incidence 
although the relevant result is not included here. A: increases as expected along the 
body a t  any fixed time and at a fixed point as time changes. Good agreement with 
its steady-state value is again seen a t  t = 0.5. 

Leeside calculations generally require a longer time to reach the steady-state 
conditions. At small times, the skin friction cf, (figure 9) varies just like that of the 
6" incidence case (figure 3),  i.e. it  decreases with increasing time at a fixed p-station 
and along the body a t  a fixed time ; the point of zero-c,, moves upstream only very 
little. At large times, these trends, however, no longer hold. There appears then a 
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FIGURE 13. Leeside skin friction, cf,, (a  = 45'). 

minimum point in the cfp curves in the nose region beginning at  about t = 0.46. This 
minimum continues to dip until a steady-state value (0.51) is reached at  
approximately t = 1.0. After passing the minimum point, cfp increases over the most 
part of the rest of the body before dropping to zero over the aft body. Steady-state 
condition was approached a t  approximately t = 1.8, the zero-cfp point does not only 
not move upstream, but also tends to  shift slightly downstream. The overall change, 
however, is so small that the zero-c,, point may be considered to stay always near the 
rear stagnation point. The unconventional behaviour of cf, described here leads to 
different unsteady separation patterns at different incidence ; this will be discussed 
in $5.  

The (cf),, for 30" incidence (figure 10) shows similar trends as that for 6" incidence 
except that the steady-state condition was reached much sooner. An important 
difference is that the zero-(c,),, point shifts from the rear to the nose so fast as to be 
in a jump manner. As seen in figure 10, this point is located a t  the rear at t = 0.10, 
but moves to the nose a t  t = 0.2. 

At small times (t  < 0.3), the displacement thickness, d;l* (figure l l) ,  increases from 
the nose to the rear, the same as in the 6" incidence case. However, this trend is 
changed fort > 0.3. Then, after a rapid increase near the nose, A: gradually decreases 
over the rest of the body. Note that the curves for ,u > 0.90 are shown only up to 
t = 0.5 ; this is because, as the zero-cfp point moves upstream, calculation cannot be 
continued much further. 

The reasons why cfp and A;l* for 30" incidence behave differently in comparison with 
those for 6" incidence can all be found from the results of the u-velocity profiles. At 
a front station ( v  = -0.8411, figure 12a), the profiles continue to  steepen a t  all times. 
This is consistent with the usual boundary-layer trend, which holds also for the 6" 
incidence. But this trend is no longer followed along the rest of the body at 30" 
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FIGURE 14. Leeside skin friction, cfy (a = 50"). 

incidence. At a mid-station (p = 0.038, figure 12b), the profiles first steepen up a t  
small times, but flatten down a t  large times. Similarly, a t  a rear station (p = 0.9588, 
figure 12c), the profiles cross each other a t  large times. 

4.3. a = 45", and 50" 

The results for a = 45" and 50" are generally similar to those for a = 30", only the 
effects of increasing incidence discussed in $4.2 become more pronounced and the 
approach to steady-state is faster. 

For a = 45", the leeside skin friction eft (figure 13) forms a minimum near the nose 
a t  a much earlier time (t = 0.10) and this minimum continues to dip until 
approaching its steady-state value of 0.034 at ,u = -0.933 and t = 1.5. Thus cf, still 
does not become zero over the forebody. The same conclusion was reported by Wang 
& Fan (1982). Similar to the a = 30" case, the zero-c,, point stays near the rear 
stagnation point almost unchanged for all the times. 

For a = 50°, a distinct feature is, however, noted in the variation of cfp (figure 14). 
While the zero-c,, point a t  early times remains a t  the rear stagnation point, the cf,- 
minimum over the forebody appears earlier and quickly dips to zero a t  t = 0.35 and 
p = -0.946. When this happens, the zero-c,, point jumps from the aftbody to the 
forebody. At t = 0.60, cf, becomes zero at p = -0.9547 and -0.9272, its minimum 
value is -0.2421 a t  ,u = -0.9538. After t = 0.63, when the minimum becomes 
-0.2811, the calculation was terminated at ,u = -0.967 because the steep increase 
of the displacement thickness signified separation. 

Based on (6), analogous limiting streamlines are drawn in the (p, t)-plane (figure 
15) for a = 50". The arrows indicate the slope a t  each coordinate point. The lines 
drawn tangent to these arrows are the limiting streamlines analogous to steady 
three-dimensional cases. The convergence of these lines signifies unsteady separation. 
Figure 15 indicates that  separation starts around t = 0.63 a t  ,u = -0.957 and 
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FIGURE 15. Unsteady limiting flow pattern and separation line in the (p,  t)-plane. Leeside, 
a = 50". 

t 

correctly approaches its steady-state value a t  large times. Similarly the line from 
which limiting streamlines diverge is the analogous line of unsteady attachment. 

5. Discussions 
From the preceding solutions on the windside and leeside symmetry-plane, 

especially the pattern of variation of cfP and ( c ~ ) ~ ~ ,  we shall now attempt to suggest 
a possible unsteady separation sequence over the whole body. The same logic was 
used previously by Wang (1972) for the steady case, and the predicted sequence was 
later confirmed by experiments and full three-dimensional calculations over the 
whole body. 

Wang & Fan (1982) reported that there is a similarity in the skin friction pattern 
of the leeside symmetry-plane between the previous steady case with incidence 01 as 
the varying parameter and the present unsteady cases with time as the parameter. 
Our current more comprehensive calculations provide further evidence in support of 
this similarity. Reproduced in figure 16 is the steady leeside cfp varying with 
incidence. Comparing figure 16 to figures 9, 13 and 14 for the unsteady cfP,  the 
similarity is apparent. In  these figures, there appears a minimum point in the cfP- 
curve near the nose when incidence is large enough in the steady case or time is large 
enough in the unsteady case. This minimum dips further and eventually becomes 
zero at high incidence and large times. 

For the steady symmetry-plane problem, the point of vanishing cfp is also the point 
of separation. For the unsteady case, although the vanishing of cfp is not synonymous 
with separation, unsteady separation occurs only after cfP becomes zero first and then 
negative. I n  other words, the vanishing of cfP is a precondition of unsteady 
separation. 

Mainly on the basis of figure 16, it was argued (Wang 1972) that steady separation 
patterns over the whole body follow a closed-open-closed cycle, i.e. closed at low 
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FIGURE 16. Leeside steady skin friction, cpp. 

incidence (6"), open a t  moderate incidence (30") and closed again a t  extremely high 
incidence for a prolate spheroid of axis-ratio 1/4 (figure 17).  Based on the afore- 
noted similarity, we shall now attempt to depict analogously an unsteady separation 
sequence. 

5.1. a = 6", low incidence 
Figures 3 4  show that both the zero-c,, point, S, and the zero-(c,),, point, R, start a t  
the rear stagnation point and then continue moving upstream as time increases. R 
moves faster and is always located ahead of S. The corresponding flow pattern near 
the symmetry-plane is illustrated in figure 18 (a ) .  Also superimposed in figure 18 ( a )  
is the steady-state separation line from previous steady calculations. The steady- 
state value for R on the leeside is p = -0.084. With so much information known on 
the symmetry-planes and the steady-state separation curve as a guide, it is argued 
that separation along all other meridians (0" < 8 < 180") will vary similarly as along 
the symmetry-plane, so that the separation lines are confined on the aft-body and are 
closed curves as illustrated in figure 18 (b ) .  As time increases, the closed separation 
line gradually expands upstream. 

5.2.  a = 30, 4 5 O ,  moderate incidence 
At a = 30°, the zero-c,, point, S, along the leeside symmetry-plane (8 = 180') 
remains near the rear stagnation point, while the corresponding zero-(c,),, point, R, 
moves quickly to the front nose (figure 10) and its steady-state location is a t  
p = -0.910. The minimum value of c,, near the nose never becomes zero. This implies 
that separation on the leeside symmetry-plane is kept at the rear end all the time. 
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FIGURE 17. Steady separation sequence. (a) Low a. ( b )  High a.  (c) Extremely high a. 
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FIGURE 18. Separation at low incidence (6'). (a) Flow near the symmetry-plane and steady 
separation line. ( b )  Unsteady separation sequence. 

The windside (i.e. 0 = 0') R and S always remain at  the very rear end. The flow 
pattern near the symmetry-planes are illustrated in figure 19 (a), where the primary 
and secondary open-separation lines for the steady case are also superimposed. Based 
on this information, it is argued that while the separation point on the leeside 
symmetry-plane remains always near the rear stagnation point, the separation 
points along other meridians (0 < 0 < 180") off the symmetry plane must move 
upstream. This is because, a t  such relatively high incidence, the circumferential flow 
over most of the body is subject to a larger adverse pressure gradient than the 
meridional flow; a mainly cross-flow separation must occur on two sides of the 
symmetry-plane a t  much earlier times. The resulting separation line on the whole 
body is expected to be of the closed type at small times (figure 19b), and gradually 
expands upstream as depicted in figure 19 (c). This latter pattern cannot continue too 
long; it must break open (figure 19d) in order to match its steady-state condition 
(figure 19e). 

The state of affairs for a = 45" is similar to what was just described for a = 30", 
except the steady-state primary separation line is almost closed, even though 
theoretically it is still open, because cfp did not become exactly zero at  large times. 
The same result was found by Wang & Fan (1982). At that time, steady separation 
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Side 

(4 

FIGURE 19. Separation at moderate incidence (30'). (a) Flow near the symmetry-plane and steady 
separation line. (b)-(e)  Unsteady separation sequence; ( b )  small time, t,, (c) t ,  > t , ,  (d )  t ,  > t,, 
starting of open separation, ( e )  large time. 

according to earlier calculations was known to be closed, i.e. cf, does go to zero, over 
the forebody a t  45" incidence. This led to the interpretation that the unsteady 
approach towards the steady-state condition can only be achieved asymptotically as 
time becomes infinite. In the present work, steady solutions for a=45" were 
recalculated with different step sizes, h,Ap = 0.004, 0.003, 0.002, 0.0015 and 0.001. 
It was found that whether cfP in the forebody goes to zero or not depends on the step 
size used. For h, A p  greater than 0.0015, cf, did become zero over the forebody, but 
for h, Ap equal to or smaller than 0.0015, cf did not reach zero, though it was very 
close. Thus, these repeated calculations make the steady and unsteady results 
consistent with each other. 

5.3. 01 = 50°, high incidence 

The main difference between 01 = 50" and the preceding cases of cc = 30" and 45" is 
that the minimum cf, near the nose finally becomes zero and even negative. The 
unsteady separation pattern is expected to go through the same sequence (figures 
19bd) except that the primary separation line becomes closed as the steady-state 
condition is approached (figure 20a). 

Between 0.35 < t < 0.63, cfP near the nose changes from positive t o  negative and 
then back from negative to positive. This implies a short recirculating bubble (figure 
Boa) imbursed inside the boundary layer. This bubble is likely to become longer 
(figure 20b) as the incidence increases to 60" or 70". At still higher incidence, a second 
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FIGURE 20. (a)-(d) Separation line and separation bubble at large times. (e) Unsteady 
separation sequence at a = 90". 

bubble emerges on the aft body (figure 20c). In the limiting case of 90" incidence, the 
separation pattern becomes symmetrical with the mid-section (figure 204 .  The 
unsteady sequence for a = 90" is expected to consist of a series of closed separation 
lines (figure 20 e ) .  

5.4. Less slender bodies 
The preceding proposed unsteady separation sequence is based on the results for a 
prolate spheroid of b/u = 114. It is expected that the same will apply to more slender 
shapes such as b /u  = 1/6, but not for less slender cases such as b /u  = 1/2. As the ratio 
bla  increases, a prolate spheroid becomes more like a sphere so there will then be no 
open separation involved and the unsteady separation sequence will consist of a 
series of closed separation lines only. 

For bodies other than a spheroid, a similar unsteady sequence may be conceived. 
For example, in the case of an impulsively-started blunt cone, open separation lines 
start a t  small times over the rear body and gradually extend forward as time 
increases. Depending upon the cone angle, nose radius and incidence, the steady- 
state separation a t  large times may remain either open or closed. 
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6. Conclusions 
The unsteady laminar boundary layers along the symmetry-plane of an 

impulsively-started prolate spheroid of axes ratio of 1/4 are calculated here for 
incidence 6", 30°, 45" and 50". The large-time results agree very well with those 
obtained previously from steady-flow calculations. 

A similarity was found in the skin friction pattern of the leeside symmetry-plane 
between the present unsteady case with time as the varying parameter. As time 
increases, the zero skin friction point at low incidence (6") continues moving 
upstream from the rear stagnation point until it reaches its steady-state location. At 
moderate incidence (30°, 45"), it remains always near the rear stagnation point. At  
still higher incidence (50"), it  does not move for a long time until it  finally jumps to 
the front nose. 

Based on the leeside skin friction patterns, it was argued in the steady case that 
separation follows a closed-open-closed cycle; i.e. over a prolate spheroid of 1/4, a 
closed separation prevails a t  low incidence, open separation at  moderate incidence 
and closed separation again at  high incidence. This steady separation cycle has later 
been confirmed by experiment and more complete calculations of three-dimensional 
boundary layers. 

Because of the above noted similarity in the leeside skin friction behaviour, 
analogous unsteady separation sequences are suggested. At  low incidence (6*), the 
separation line starts around the rear stagnation point, and continues to extend 
upstream until it approaches the steady-state position. At  all times, however, 
separation is of the closed type. At moderate to high incidence (30", 45", 50°), closed 
separation develops a t  small times, but open separation at  large times. On 
approaching the steady-state condition, separation may either remain open (a  = 30°, 
45") or become closed ( a  = 50'). Thus the open vs. closed separation sequence 
originally developed for steady flows appears to have found a counterpart in 
unsteady flows. 

For a less slender spheroid such as b/a = 1/2, there is no open separation involved, 
unsteady separation lines are all of the closed type. Similar ideas hold for general 
bodies other than spheroids. 

Note added in proof. Recent extensive experiments show that steady separation is 
closed at  a < 5", but becomes marginally open at  6". Hence, the discussion in $5.1 for 
large times applies more appropriately to a < 5" rather than a < 6". Details will be 
reported later. 
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